|  | Helpful Stan Functions
							 | 
| Modules | |
| Johnson Quantile Parameterized Distributions (J-QPD) functions | |
| Student T Quantile functions | |
| Functions | |
| real | lognormal_qf (real p, real mu, real sigma) | 
| real | skew_generalized_t_qf (real x, real mu, real sigma, real lambda, real p, real q) | 
| real | unit_johnson_qf (real p, real mu, real sigma) | 
In probability and statistics, the quantile function - also known as 
 an inverse cumulative distribution function - is, associated with a probability distribution of a random variable, specifies the value of the random variable such that the probability of the variable being less than or equal to that value equals the given probability. 
See https://en.wikipedia.org/wiki/Quantile_function for more information.
| real lognormal_qf | ( | real | p, | 
| real | mu, | ||
| real | sigma | ||
| ) | 
Lognormal Quantile Function
\begin{aligned} F^{-1}(p) &= \exp(\mu + \sqrt{2} \, \sigma \, \text{inv_erf}(2p - 1)) \\ &= \exp(\mu + \sigma \, \Phi^{−1}(x)) \end{aligned}
because
\begin{aligned} \Phi(x) &= \frac{1}{2\pi} \int_{-\infty}^x e^{-t^2}dt \\ &= \frac{1}{2} + \frac{1}{2}\text{erf}\bigg( \frac{x}{\sqrt{2}} \bigg) \end{aligned}
implies that \( \Phi^{-1}(x) = \sqrt{2} \, \text{inv_erf}(2x - 1) \).
| p | Real on \([0,\,1]\) | 
| mu | Real \((-\infty, +\infty)\) | 
| sigma | Real \((0, +\infty)\) | 
| reject | if \( p \notin [0, 1] \) | 
| real skew_generalized_t_qf | ( | real | x, | 
| real | mu, | ||
| real | sigma, | ||
| real | lambda, | ||
| real | p, | ||
| real | q | ||
| ) | 
Skewed Generalized T Quantile Function
For more information, please see Skew Generalized T distribution functions.
| quant | Real on \([0,\,1]\) | 
| mu | Real | 
| sigma | Real \(\in (0, \infty)\) scale parameter | 
| lambda | Real \(-1 < \lambda < 1\) | 
| r | Real \(\in (0, \infty)\) kurtosis parameter | 
| q | Real \(\in (0, \infty)\) kurtosis parameter | 
| real unit_johnson_qf | ( | real | p, | 
| real | mu, | ||
| real | sigma | ||
| ) | 
Unit Johnson SU Quantile Function
\begin{aligned} F^{-1}(p, \, \mu, \, \sigma) &= \text{inv_logit}\bigg[ \sinh\bigg(\frac{\Phi^{-1}(p) - \mu}{\sigma}\bigg) \bigg]\\ \end{aligned}
| p | Real on \([0,\,1]\) | 
| mu | Real \((-\infty, +\infty)\) | 
| sigma | Real \((0, +\infty)\) | 
| reject | if \( p \notin [0, 1] \) |