Helpful Stan Functions
|
Functions | |
real | frank_copula_lpdf (vector u, vector v, real theta) |
The Frank copula bivariate cumulative density function is defined as
\[ C(u,v) = -\frac{1}{\omega}\ln \big[1 + \frac{(\exp(-\omega u) - 1)(\exp(-\omega v)-1)}{\exp(-\omega) -1} \big] \]
for \(\omega \in (-\infty, \infty) \,/\ \{0\}\).
The Frank copula bivariate probability density function is defined as
\[ c(u, v) = \frac{ \partial^2 C(u, v) }{ \partial u \partial v} = \frac{\omega (1 - \exp(-\omega))(\exp(-\omega(u + v)))}{[ (1 - \exp(-\omega)) - (1 - \exp(-\omega u))(1 - \exp(-\omega v))]^2} \]
real frank_copula_lpdf | ( | vector | u, |
vector | v, | ||
real | theta | ||
) |
Frank Bivariate Copula Log Density
Sean Pinkney
The copula is defined \(\omega \in (-\infty, \infty) \,/\ \{0\}\)
u | Vector with elements in \((0,1]\), not checked but function will return NaN |
v | Vector with elements in \((0,1]\), not checked but function will return NaN |
omega Real number on (-Inf, Inf) / {0}, values of \omega greater than 37 will result in overflow